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Spin-transfer torque and current-induced spin dynamics in spin-valve nanopillars with the free magnetic
layer located between two magnetic films of fixed magnetic moments is considered theoretically. The spin-
transfer torque in the limit of diffusive spin transport is calculated as a function of magnetic configuration. It
is shown that noncollinear magnetic configuration of the outermost magnetic layers has a strong influence on
the spin torque and spin dynamics of the central free layer. Employing macrospin simulations we make some
predictions on the free layer spin dynamics in spin valves composed of various magnetic layers. We also
present a formula for critical current in noncollinear magnetic configurations, which shows that the magnitude
of critical current can be several times smaller than that in typical single spin valves.
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I. INTRODUCTION

Magnetic multilayers are ones of the most relevant ele-
ments in the development of cutting-edge technologies. If
current flows along the axis of a metallic hybrid nanopillar
structure, a spin accumulation builds up in the vicinity of the
normal-metal/ferromagnet interface. Moreover, the current
produces spin-transfer torque �STT� which acts on magnetic
moments of the ferromagnetic layers.1,2 As a consequence,
magnetization of a particular layer may be driven to an os-
cillation mode3 or can be switched between possible stable
states.4 However, current-induced control of magnetic mo-
ments requires a rather high current density. Therefore, re-
duction of the critical current density remains the most chal-
lenging requirement from the point of view of possible
applications. Since the critical currents are related to STT,
which in the diffusive transport regime is proportional to
spin accumulation at the normal-metal/ferromagnet interface,
one may alternatively rise a question of possible ways to
enhance the spin accumulation.

One of the possibilities to decrease the critical current
density in metallic structures is the geometry proposed by
Berger,5 in which the free magnetic layer is located between
two pinned magnetic layers of opposite magnetizations. In-
deed, in such a dual spin-valve �DSV� geometry both inter-
faces of the free layer can generate STT, and this may de-
crease the critical current several times.5

To examine the influence of an additional magnetic layer
on the free layer’s spin dynamics one needs to find first the
STT acting on the central layer for arbitrary direction of its
magnetization vector. To do this, we employ the spin-
dependent diffusive transport approach6 based on Valet-Fert
description.7 In this paper we present a comprehensive sur-
vey of STT-induced effects in DSVs for generally noncol-
linear magnetic configuration of the outermost magnetic
films. We also study asymmetric exchange-biased DSV in
which magnetic moment of one of the outer magnetic layers
is fixed to an antiferromagnetic layer due to exchange aniso-
tropy. We show that a nonstandard �wavylike� angular depen-
dence of STT found in asymmetric spin valves6,8,9 can also
occur in DSV geometry. Such a nonstandard angular depen-
dence of the torque is of some importance from the applica-

tion point of view, as it allows to induce steady-state preces-
sional modes without external magnetic field.8,10

Furthermore, we examine current-induced spin dynamics
within the macrospin model and derive a formula for critical
currents which destabilize trivial fixed points of the central
spin’s dynamics in noncollinear configurations of the outer-
most magnetizations.

In Sec. II we describe the model and introduce basic for-
mula for STT and spin dynamics in DSVs. Then, in Sec. III
we study dynamics in a symmetric DSV geometry, where we
compare STT and spin dynamics in DSVs and single spin
valves �SSVs�. In Sec. IV we analyze an exchange-biased
DSV structure with noncollinear magnetic moments of the
outermost magnetic layers. Finally, we conclude in Sec. V.

II. MODEL

We consider a multilayer nanopillar structure,
FL /NL /FC /NR /FR, consisting of three ferromagnetic �F� lay-
ers separated by normal-metal �N� layers and sandwiched
between semi-infinite cooper electrodes; see Fig. 1. Spin mo-
ment of the central layer, FC, is free to rotate while the right
FR and left FL ferromagnetic layers are much thicker and
their net spin moments are assumed to be fixed for current
densities of interest. Fixing of these moments can be
achieved either by sufficiently strong coercieve fields or by
exchange anisotropy at interfaces with antiferromagnetic ma-
terials.

FIG. 1. �Color online� Schematic of a dual spin valve with fixed
magnetic moments of the outer magnetic layers, FL and FR, and free
central magnetic layer, FC, separated by normal-metal layers NL

and NR. Here, ŜL, ŜR, and ŝ are unit vectors along the spin moments
of the FL, FR, and FC layers, respectively.
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In the Landau-Lifshitz-Gilbert phenomenological descrip-
tion, the dynamics of a unit vector along the net spin moment
ŝ of the central �free� magnetic layer is described by the
equation

dŝ

dt
+ �ŝ �

dŝ

dt
= � , �1�

where � is the Gilbert damping parameter. The right-hand
side represents the torques due to effective magnetic field
and spin transfer,

� = − ��g��0ŝ � Heff +
��g�
Msd

� , �2�

where �g is the gyromagnetic ratio, �0 is the vacuum perme-
ability, Ms stands for the saturation magnetization of the free
layer, and d denotes thickness of the free layer. Considering
the thin ferromagnetic free layer of elliptical cross section,
the effective magnetic field Heff can be written as

Heff = − Hextêz − Hani�ŝ · êz�êz + Hdem, �3�

and includes applied external magnetic field �Hext�, uniaxial
anisotropy field �Hani�, and the demagnetization field �Hdem�,
where êz is the unit vector along the z axis �easy axis�, com-
pare scheme in Fig. 1. The demagnetization field can be writ-
ten in the form Hdem= �ŝ ·N�Ms= �Hdxsx ,Hdysy ,Hdzsz�, where
N is a diagonal demagnetization tensor.

Spin-transfer torque

Generally, STT acting on a magnetic layer is determined
by the electron-spin angular momentum absorbed from con-
duction electrons within a few interfacial atomic layers of the
ferromagnet.11 Thus, the STT acting on the central layer FC
can be calculated as �= �� /2��j�

L − j�
R �, where j�

L and j�
R are

the spin-current components perpendicular to magnetic mo-
ment of the free layer and calculated at the corresponding left
and right normal-metal/ferromagnet interfaces. The torque
consists of in-plane �� �in the plane formed by magnetic mo-
ments of the two interacting films� and out-of-plane �� �nor-
mal to this plane� parts, �=�� +��, which have the following
forms

�� = Iŝ � �ŝ � �aLŜL − aRŜR�� , �4a�

�� = Iŝ � �bLŜL − bRŜR� , �4b�

where I is the current density, and ŜL and ŜR are the unit
vectors pointing along the fixed net spins of the FL and FR
layers, respectively. The parameters aL, aR, bL, and bR de-
pend, generally, on the magnetic configuration and material
composition of the system, and have been calculated in the
diffusive transport limit.6 According to first-principles calcu-
lations of the mixing conductance,12 the out-of-plane torque
in metallic structures is about two orders of magnitude
smaller than the in-plane torque. Although this component
has a minor influence on critical currents, it may influence
dynamical regimes, so we include it for completeness in our
numerical calculations.

Let us consider now how the STT affects spin dynamics
of the free magnetic layer. We rewrite Eq. �1� in spherical
coordinates �� ,��, which obey ŝ= �cos � sin � , sin � sin � ,
cos ��; see Fig. 1. Defining unit base vectors, ê�= �êz� ŝ� /
sin � and ê�= ê�� ŝ, Eq. �1� can be rewritten as

d

dt
��

�
� =

1

1 + �2�sin−1 � − � sin−1 �

� 1
��v�

v�
� , �5�

where the overall torques v� and v�, changing the angles �
and �, respectively, read

v� = � · ê� = − ��g��0�Hdx − Hdy�cos � sin � sin � +
��g�
Msd

��,

�6a�

v� = � · ê� = − ��g��0�Hext + �Hani + Hdx cos2 � + Hdy sin2 �

− Hdz�cos ��sin � +
��g�
Msd

��. �6b�

The first terms in Eq. �6� describe the torques due to demag-
netization and anisotropy fields of the free layer while ��

=��
� +��

� and ��=��
� +��

� are the corresponding components
of the current-induced torque, which originate from �� and
��.

As we have already mentioned above, the main contribu-
tion to STT comes from ��. Assuming now that magnetic
moment of the left magnetic layer is fixed along the z axis,

ŜL= �0,0 ,1�, and magnetic moment of the right magnetic
layer is rotated by an angle 	 from the z axis and fixed in the

layer’s plane �see Fig. 1�, ŜR= �0,sin 	 , cos 	�, one finds

��
� = �aL − aR cos 	�I sin � + aRI sin 	 sin � cos � ,

�7a�

��
� = aRI cos � sin 	 . �7b�

The component ��
� consists of two terms. The first one is

analogous to the term which describes STT in a SSV. How-
ever, its amplitude is now modulated due to the presence of
FR. In turn, the second term in Eq. �7a� is nonzero only in
noncollinear magnetic configurations. From Eq. �7b� follows
that ��

� is also nonzero in noncollinear configurations and
only if the magnetization points out of the layer’s plane ��
�
 /2�. When magnetic moments of the outer magnetic lay-
ers are parallel �	=0�, ��

� = �aL−aR�I sin �. For a symmetric
DSV, aL���=aR���, and hence STT acting on ŝ vanishes. On

the other hand, in the antiparallel configuration of ŜL and ŜR
�	=
�, the maximal spin-torque enhancement can be
achieved, ��

� = �aL+aR�I sin �.
Similar analysis of �� leads to the following formulas for

��
� and ��

�,
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��
� = bRI cos � sin 	 , �8a�

��
� = − �bL − bR cos 	�I sin � + bR cos � sin � sin 	 .

�8b�

Thus, if the outer magnetic moments are collinear, ��
�=0,

while ��
� reduces to ��

�=−�bL−bR�I sin � for 	=0 and ��
�

=−�bL+bR�I sin � for 	=
. Hence, in symmetric spin
valves, where bL=bR, ��

� vanishes in the parallel configura-
tion of the outermost magnetic moments and is enhanced in
the antiparallel configuration.

In the following sections we investigate STT and its ef-
fects on critical current and spin dynamics. We start from
symmetric spin valves in antiparallel magnetic configuration
�	=
�. Then, we proceed with asymmetric exchange-biased
dual spin valves.

III. SYMMETRIC DSVS

Let us consider first symmetric DSVs with antiparallel
orientation of magnetic moments of the outermost ferromag-

netic films: ŜL= �0,0 ,1� and ŜR= �0,0 ,−1�. As indicated by
Eqs. �7� and �8�, such a configuration may lead to enhance-
ment of STT in comparison to that in SSVs. Thus, let us
analyze first STT in two types of structures: the double spin
valve F�20�/Cu�10�/F�8�/Cu�10�/F�20� in the antiparallel
configuration and the corresponding single spin valve F�20�/
Cu�10�/F�8�. The numbers in brackets correspond to layer
thicknesses in nanometers.

In Fig. 2 we show the angular dependence of STT for
DSVs and SSVs, when the vector ŝ changes its orientation,
described by angle �, in the layer plane ��=
 /2�. The mag-
netic layers made of permalloy, Ni80Fe20 �Fig. 2�a��, and of
cobalt �Fig. 2�b�� are considered. Due to the additional fixed
layer �FR�, STT in DSVs is about twice as large as in SSVs,
which is consistent with Berger’s predictions.2 Additionally,
the angular dependence of STT acting on the free layer in
Co/Cu/Co spin valves is more asymmetric than in Py/Cu/Py.
This asymmetry, however, disappears in Co/Cu/Co/Cu/Co
DSVs due to superposition of the contributions from both
fixed magnetic layers to the STT.

The enhancement of STT in dual spin valves may lead to
two important improvements of the spin dynamics: reduction

in the critical current needed to trigger the spin dynamics and
decrease in the switching time. The latter is defined as the
time needed to switch the magnetization from one stable
position to the opposite one. The fixed points of the dynam-
ics of ŝ are given by the equations v�=0 and v�=0. If 	
=
, they are satisfied for �=0 and �=
. Employing the
“zero-trace” stability condition of the linearized Landau-
Lifshitz-Gilbert equation,14 we find the critical current desta-
bilizing the initial ��=0� state in the form

Ic,DSV
0 =

��0Msd

aL
0 + aR

0 �Hext + Hani +
Hdx + Hdy

2
− Hdz� , �9�

where aL
0 and aR

0 are calculated for �→0. Additionally, we
have omitted here the terms resulting from �� because of
their small contribution to the critical current. Equation �9� is
analogous to the expression for critical current in SSV.13 Ac-
cording to our calculations, the critical current in DSVs with
F=cobalt is six times smaller than in SSVs, as reported by
Berger.5 However, if F=permalloy, the introduction of a sec-
ond fixed magnetic layer reduces the critical current only by
a factor of 2. This difference arises from the dependence of
spin accumulation on spin-flip length which is about ten
times longer in cobalt than in permalloy.6

To estimate the switching time in DSVs as well as in
SSVs we employ the single-domain macrospin approxima-
tion to the central layer. Equation �1�, including Eqs. �3� and
�4�, completely describe the dynamics of central layer’s spin,
ŝ. In our simulations we assumed a constant current of den-
sity I. The positive current �I�0� is defined for electrons
flowing from FR toward FL �current then flows from FL to-
ward FR�; opposite current is negative. Apart from this, the
demagnetization field of the free layer of elliptical cross sec-
tion with the axes’ lengths 130 and 60 nm has been assumed
while external magnetic field was excluded, Hext=0. For
each value of the current density, from Eq. �1� we found
evolution of ŝ starting from an initial state until ŝ switched to
the opposite state �provided such a switching was admitted�.
In all simulation, the spin was initially slightly tilted in the
layer plane from the orientation ŝ= �0,0 ,1�, assuming �0
=1° and �0=
 /2. A successful switching, with the switching
time ts, is counted when sz�ts��−0.99, where sz�t� is the
exponentially weighted moving average,15 sz�t�=
sz�t�+ �1
−
�sz�t−�t�, �t is the integration step, and the weighting
parameter 
=0.1. The moving average sz is calculated only
in time intervals, where sz�t� remains continuously below the
value of −0.9; otherwise sz�t�=sz�t�. Figure 3 compares the
switching times in DSVs and in the corresponding SSVs. In
both cases shown in Fig. 3, a considerable reduction in the
switching time is observed in DSVs. Similarly as for the
critical current, the reduction in current required for switch-
ing in DSVs with cobalt layers is larger from that in DSVs
with permalloy layers.

IV. EXCHANGE-BIASED DSV

Let us consider now an asymmetric exchange-biased DSV
structure with an antiferromagnetic layer IrMn adjacent to
the FR layer in order to pin its magnetic moment in a re-
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FIG. 2. Spin-transfer torque �� in symmetric DSVs, F�20�/
Cu�10�/F�8�/Cu�10�/F�20�, in the antiparallel configuration, 	=
,
�solid lines�, and STT in SSVs, F�20�/Cu�10�/F�8� �dashed lines�,
where �a� F=permalloy and �b� F=cobalt. STT is shown in the units
of ��I� / �e� and calculated for �=
 /2. The material parameters as in
Ref. 13.
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quired orientation, i.e., the structure Co�20�/Cu�10�/Py�4�/
Cu�4�/Co�10�/IrMn�8�. The left magnetic layer, FL=Co�20�,
is assumed to be thick enough so its magnetic moment is

fixed, ŜL= êz. In turn, magnetic moment of the right ferro-
magnetic layer, FR=Co�10�, is fixed in the layer plane at a

certain angle 	 with respect to ŜL due to the exchange-bias
coupling to IrMn.

From Eqs. �6a�, �6b�, �7a�, �7b�, �8a�, and �8b� follows,
that in a general case �	�0�, the points �=0 and �=
 are
no more solutions of the conditions for fixed points, v�=0
and v�=0, because of the additional terms in STT, which
appear in noncollinear situations �discussed in Sec. II�. These
additional terms lead to a nontrivial � dependence of STT
and to a shift of the fixed points out of the collinear posi-
tions.

To analyze this effect in more details, let us consider first
STT assuming ŝ in the layer plane ��=
 /2�. According to
Eqs. �7b� and �8b�, and to the fact that the parameters b are
much smaller than a, the component �� is very small. In Fig.
4�a� we show the second component of the torque, namely,
��, as a function of the angle � and for different values of the

angle 	. The configurations where ��=0 are presented by the
contour in the base plane of Fig. 4�a�.

In the whole range of the angle 	, two “trivial” zero
points are present. Additionally, for small angles close to 	
=0, two additional zero points occur. The appearance of
these additional zero points closely resembles nonstandard
wavylike STT angular dependence, which has been already
reported in single spin valves with magnetic layers made of
different materials.6,8,16 Such a � dependence dictates that
both zero-current fixed points ��=0,
� become simulta-
neously stabilized �destabilized� for positive �negative� cur-
rent. This behavior is of special importance for stabilization
of the collinear configurations and for microwave generation
driven by current only �without external magnetic field�.6,8,17

We note, that in contrast to SSVs, the wavylike � dependence
in exchange-biased DSVs is related rather to asymmetric ge-
ometry of the multilayer than to bulk and interface spin
asymmetries. This trend is depicted in Fig. 4�b�, where we
show variation in STT for different thicknesses of FR at 	
=0. The wavylike torque angular dependence appears for the
thickness of FR markedly different from that of FL.

Making use of the above described STT calculations, ex-
tended to arbitrary orientation of ŝ, we performed numerical
simulations of spin dynamics induced by a constant current
in zero external magnetic field �Hext=0�. The sample cross
section was assumed in the form of an ellipse with the axes’
lengths 130 and 60 nm. As before, the numerical analysis has
been performed within the macrospin framework, integrating
equation of motion, Eq. �1�. In the simulation we analyzed
the long-term current-induced spin dynamics started from the
initial state corresponding to �0=1°, �0=
 /2.

As one might expect, the current-induced spin dynamics
of the free layer depends on the angle 	, current density I,
and on current direction. To designate different regimes of
STT-induced spin dynamics, we constructed a dynamical
phase diagram as a function of current and the angle 	. The
diagram shows the average value 	sz
 of the z component of
the free layer net spin in a stable dynamical regime �see Fig.
5�a��, as well as its dispersion D�sz�=�	sz

2
− 	sz
2 �see Fig.
5�b��. The average value 	sz
 provides an information on the
spin orientation, whereas the dispersion distinguishes be-
tween static states �for which D=0� and steady precessional
regimes �where D�0�, in which the z component is in-
volved. For each point in the diagram, a separate run from
the initial biased state �0=
 /2 and �0=1° was performed. In
the 	sz
 diagram, Fig. 5�a�, one can distinguish three specific
regions. Region �i� covers parameters for which a weak dy-
namics is induced only: ŝ finishes in the equilibrium stable
point which is very close to ŝ= �0,0 ,1�. As the angle 	 in-
creases, STT becomes strong enough to cause switching, as
observed in the region �ii�. The higher the angle 	, the
smaller is the critical current needed for destabilization of the
initial state. For smaller 	, the current-induced dynamics
occurs for currents flowing in the opposite direction, see the
region �iii�. This behavior is caused by different sign of STT
in the initial state. From 	sz
 we conclude that neither of the
previously mentioned stable states is reached. To elucidate
the dynamics in region �iii�, we constructed the correspond-
ing map of D�sz�, Fig. 5�b�. This map reveals three different
modes of current-induced dynamics. For small current am-
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FIG. 3. Switching time in DSVs F�20�/Cu�10�/F�8�/Cu�10�/
F�20� in the antiparallel magnetic configuration, 	=
, �solid lines�
and in SSVs F�20�/Cu�10�/F�8� �dashed lines�, where �a� F
=permalloy and �b� F=cobalt. The switching time is shown as a
function of the normalized current density I / I0 with I0

=108 A cm−2. The other parameters as in Fig. 2.
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FIG. 4. �a� STT acting on the central magnetic layer in Co�20�/
Cu�10�/Py�4�/Cu�4�/Co�10�/IrMn�8� exchange-biased DSV as a
function of the angle �, calculated for 	=k
 /4, k=0,1 ,2 ,3 ,4. The
contour plot in the base plane corresponds to zeros of ��. �b� Wavy-
like STT angular dependence in exchange-biased DSV for 	=0,
calculated for different thicknesses of the FR layer. STT is shown in
the units of ��I� / �e�. The other parameters as in Fig. 2.
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plitudes, in-plane precession �IPP� around the initial stable
position is observed. The precessional angle rises with in-
creasing current amplitude. Above a certain critical value of
I, the precessions turn to out-of-plane precessions �OPPs�. In
a certain range of 	, the OPPs collapse to a static state �SS�,
where the spin ŝ remains in an out-of-plane position close to
�êx.

As ŜR departs from the collinear orientation, the critical
current needed for destabilization of the initial state in-
creases. This growth is mostly pronounced close to 	=
 /2.
To describe the critical current, we analyzed Eq. �5� with
respect to the stability of ŝ in the upper position. Assuming

that even in noncollinear configuration the stable position of
ŝ is close to �=0, we have linearized Eq. �5� around this
point for arbitrary 	. Then, for the critical current needed for
destabilization of the considered stable state we find

Ic,EBDSV
0 �

��0Msd�Hani +
Hdx + Hdy

2
− Hdz�

aL
0�	� − aR

0 �	�cos 	
, �10�

where aL
0�	� and aR

0 �	� are calculated �for each configura-
tion� assuming �→0. Comparison of Eq. �10� with the re-
sults of numerical simulations is shown in Fig. 5�a�. When
considering the opposite stable point as the initial state, we
need to take aL and aR for �→
. Clearly, to destabilize the
�=
 state one needs current of opposite direction.

Current-induced oscillations are usually observed experi-
mentally via the magnetoresistance effect.3 When electric
current is constant, then magnetic oscillations cause the cor-
responding resistance oscillations, which in turn lead to volt-
age oscillations. The later are measured directly in experi-
ments. In Fig. 5�d� we show oscillations in the system
resistance associated with the IPP �left� and OPP �right�. As
the amplitude of the oscillations corresponding to the OPP
mode is sufficiently large to be measured experimentally, the
amplitude associated with the IPP mode is relatively small.
This is the reason, why IPP mode is usually not seen in
experiments.

V. DISCUSSION AND CONCLUSIONS

We have calculated STT in metallic dual spin valves for
arbitrary magnetic configuration of the system but with mag-
netic moments of the outer magnetic films fixed in their
planes either by large coercieve fields or by exchange aniso-
tropy. In the case of symmetric DSV structures, we found a
considerable enhancement of STT in the antiparallel mag-
netic configuration. This torque enhancement leads to reduc-
tion in the critical current for switching as well as to reduc-
tion in the switching time. The switching improvement has
been found to be dependent on the spin-flip lengths in the
magnetic and nonmagnetic layers. According to our numeri-
cal simulations, an ultrafast subnanosecond current-induced
switching processes can occur in DSVs with antiparallel
magnetic moments of the outermost magnetic films.

In exchange-biased spin valves we have identified condi-
tions which can lead to various types of spin dynamics. For
	�
 /2, the negative current excites the central magnetic
layer while for 	�
 /2, opposite current direction is
needed. We have evaluated parameters for which switching
to a new stable state or to a precessional regime appears.
This is especially interesting from the application point of
view. However, the SS should be treated carefully. Such a
state is often connected with the wavylike angular depen-
dence of STT.13,16,17 The SS becomes stable in the frame-
work of macrospin model, when STT disappears in a certain
noncollinear configuration. However, experimentally such a
state has not been observed so far.16 It has been shown in
more realistic micromagnetic approach, that this static state
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FIG. 5. �Color online� Dynamical phase diagram for Co�20�/
Cu�10�/Py�4�/Cu�4�/Co�10�/IrMn�8� exchange-biased double spin
valve as a function of the angle 	 and normalized current density
I / I0 �with I0=108 A cm−2�: �a� average value of the sz spin com-
ponent, the dashed lines represent the critical current calculated
according to Eq. �10�; �b� dispersion of the sz spin component; �c�
typical precessional orbits; and �d� resistance oscillations associated
with the IPP for 	=0.4
 and I=−1.3I0 �left part� and with the OPP
for 	=0.1
 and I=−1.3I0 �right part�. The other parameters as in
Fig. 3.
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may correspond to out-of-plane precessions.18 The reason of
this is the finite strength of exchange coupling in magnetic
film, which does not fully comply with the macrospin ap-
proximation in some cases.

Finally, we have derived an approximate formula for the
critical current in exchange biased DSVs, valid for noncol-
linear magnetic configurations. This formula, Eq. �10�, is in
good agreement with the numerical simulations.
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